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The goal of the present work is to find a simple way to calculate the density and 
viscosity of the mixtures composed of N2, O2, CO2, Ar, and H2O that will be used in the 
Exhaust Meter Calibration Facility (EMCF). Density will be used to convert the mass 
flow rates measured by critical nozzles to the volumetric flow rate which is often the 
output of the meter under test. Viscosity is needed to calculate the Reynolds number of 
the flow, as it will often be the independent variable for the presentation of calibration 
data for the meter under test. Other quantities such as thermal conductivity and specific 
heat may also be required for calculating the appropriate dimensionless quantities for 
presentation of calibration data from thermal meters, but the methods for their calculation 
has not been undertaken as yet. 

The methods of calculation will be programmed in a data acquisition and control 
program and should involve simple mathematics to minimize programming mistakes, 
programming costs, execution times, and storage space. Yet to not impact the uncertainty 
analysis significantly, the method should yield values within 0.1% for density. For 
viscosity, values within 4% are acceptable since experimental viscosity measurements are 
not very accurate: deviations between the most sophisticated calculation methods and 
experimental results are often greater than 2%, and calibration factors are not strong 
functions of the Reynolds number. The range of temperatures to be used is from 270 K to 
700 K, and the pressure is essentially atmospheric pressure (101325 Pa). 

Before outlining the simplified equations for calculating the density and viscosity 
of multi-component gas mixtures, some background information is presented. Finally, a 
comparison of the simplified calculation results to the best available density and viscosity 
data will be made to judge the accuracy of the calculations. 

Density from the Virial Equation 

The equation for the density of an ideal gas is: 

ρ ideal 
P M⋅ 

R T⋅ 100
3⋅

:= (1)

where ρ is in 
g 

cm 
3
, P is pressure in Pa, M is the molecular weight, R is the universal gas 

constant 8.31451 
J 

mol K ⋅
, and T is the temperature in K. 

behavior of a gas, the compressibility factor, Z, may be introduced to create a virial 
equation of state: 

To correct for the non-ideal



⋅P M
ρ := (2) 

⋅R T⋅100
3⋅Z 

Z := 1 + B⋅ρ + C⋅ρ
2 

+ D⋅ρ
3 

(3) 

where B, C, and D are the second, third, and fourth virial coefficients. Their values may 
be found experimentally over a range of pressures and temperatures, or they may be 
calculated by the approaches of statistical mechanics and intermolecular potential energy 
functions. From the molecular theory point of view, B accounts for the interations of pairs 
of molecules, C accounts for interactions of sets of three molecules, etcetera. At high 
temperatures and low pressures, molecules behave more like point masses, and gas 
behavior approaches the ideal gas law (Z approaches 1). Analysis of values of C and D for 
the gases of interest over the temperatures and pressures of interest, shows that the third 
(and higher) virial coefficients are negligible. In the virial equation, ρ ideal can be used 

instead of the real gas density without significant increase in error, thereby avoiding the 
need for an iterative solution for ρ. Hence, the problem of calculating density now centers 
on calculating the second virial coefficient, B. As explained in the following section, the 
second virial coefficient is related to the potential energy between pairs of molecules and 
the theory of intermolecular forces can be used to predict the dependence of B on 
temperature. 
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Figure 1: The second virial coefficient for N2-N2 interactions versus temperature. At higher temperatures, 
approaches zero and the gas approaches ideal gas law behavior. 
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The Principle of Corresponding States 

The forces between molecules and many of the bulk properties of a gas are 
governed by the intermolecular potential energy function, U. The potential energy 
function leads to an attractive force between molecule pairs at long range, and strong 
repulsive forces at short range. Numerous potential energy functions have been 
proposed and most of them have the intermolecular forces characterized by two 
parameters: the separation for zero potential energy, σ, and the minimum potential 
energy (or well depth), ε. A commonly used function is the Lennard-Jones potential: 

  σ 
12 

 σ 
6  

U r( )  := 4⋅ε⋅   −    (4)
  r   r   

where r is the intermolecular separation. 
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Figure 2: The Lennard-Jones intermolecular potential energy function for N2 labeled 

with the two characterizing parameters, σ and ε. 

The second virial coefficient and viscosity can be calculated via certain 
integrals if the potential function is known. But since the potential function cannot be 
predicted exactly, what is actually done is: experiments are performed on a gas to 
measure the second virial coefficent or viscosity over a range of temperatures, the data 
are best fitted to arrive at values of σ and ε for that gas, these values are used to 
calculate B and viscosity under other conditions. 

Potential functions which are of the form U r( )  := ε⋅F 
r  (as the

 σ  
Lennard-Jones 



Lennard-Jones 

⋅k T
a single variable, the reduced temperature, Tr := , where k is the Boltzmann

ε 

potential is) have the useful characteristic that their integrals can be written in terms of 

constant = 1.380658⋅10
− 23	 J 

. With this approach, the second virial coefficient can
K 

be written as: 

B T Tr( )  := b0⋅Br( )  (5) 

where b0 is a gas dependent constant and Br  is a reduced second virial coefficient 

which can be used for many different gases that obey the same potential function. A 
,similar quantity, Ωr(2 2), the reduced collision integral, can be used to calculate 

viscosity, η, by the following equation: 

1 

⋅ 2 

η := 
5 

⋅ m k⋅T 
 ⋅ 

1 
(6) 

, 16  π  σ
2
⋅Ωr(2 2) 

M 
where m is the mass of a molecule, , and NA is Avagadro's number =

NA 

6.0221367⋅10
23 

mol
− 1

. 

While the Lennard-Jones potential applies well to noble gases and to 
approximately spherical polyatomic molecules, it does not model the behavior of polar 
molecules such as water. Polar molecules are more compressible than non-polar 
molecules due to additional electrical attractions. Thus for polar molecules the 
Stockmayer potential function has been introduced which includes a third parameter, 
δmax ,due to the dipole moment of the molecule. Equations of the same form as (5) 

and (6) can be applied for polar molecules, but the reduced second virial coefficient 
and the reduced collision integral become functions of both the reduced temperature, Tr 

and the dipole moment parameter, δmax . 

Proposed Methods of Calculation 

Thorough treatments of the most sophisticated methods for calculating the 
second virial coefficient and viscosity of multi-component gas mixtures can be found 
in Bzowski et al., Maitland et al., and Hirshfelder et al. The following portion of this 
document will be devoted to explaining a simplified approach designed to meet the 
requirements outlined in the introduction. 



Density Calculations 

The second virial coefficient for a gas mixture, Bmix , is normally calculated 

by the following equation: 

Bmix 

i 

Bi j, xi⋅ xj⋅∑∑:= (7) 

which for a three component gas mixture can be written as: 

Bmix x1( )2 
B1 1,⋅ 2 x1⋅ x2⋅ B1 2,⋅+ x2( )2 

B2 2,⋅+:= (8) 

where xi and xj are the mole fraction of the ith and jth gas components, and Bi j,  is 

the virial coefficient due to the molecular interactions of components i and j. 
if i = , Bi j,  represents the pure gas virial coefficient, that due to 

molecules of the same species (a self-interaction virial coefficient). i ≠ , Bi j, 
represents interactions between different species (a cross-interaction virial 
coefficient). 
(see Bzowski et al.). 
fitted to experimental virial coefficient data to predict the values of Bi j, . 

only the terms of Bmix  were 

included. 

To determine which terms of summation (7) were significant, values of Bi j, 

j 

Hence, 
j interaction of 

But if j

Elaborate methods are available for predicting cross virial coefficients 
The proposed simplified method uses polynomial equations 

Further, 

summation (7) that are significant for calculation of 

were found (Dymond and Smith) for the worst case conditions ( T := 270 K) and Bmix 

was calculated for seven postulated gas compositions. The gas composition test 
cases were developed to span the full range of compositions found in exhaust flows. 
The test case compositions are listed below: 

xN2 xO2 xCO2 xAr xH2O 

Table 1: 
contributions to Bmix 

Test case gas mixture compositions set up to determine significant 



Any summation term which when removed caused density changes less than 0.01% for 
all of the test cases, was considered negligible. Bi j, 's were found to The significant 

be: N2-N2, N2-O2, N2-CO2, N2-H2O, O2-H2O, CO2-CO2, CO2-H2O, and 
H2O-H2O. 

Dymond and Smith have compiled a very complete set of values for the self-
and cross-interaction virial coefficients from the available literature. Kehiaian presents 
polynomial equation best fit coefficients for predicting B for the self-interaction virial 
coefficients for the gases of interest here. However, he gives no coefficients for 
cross-interation B's, so it was necessary to perform best fits of the form suggested by 

data available (for example O2-H2O), and in these cases the 

method of corresponding states as demonstrated by Hirschfelder et al., p. 223 was 
utilized to generate more points for the polynomial fitting. The form of the polynomial 
fit and the best fit coefficients are given below: 

Kehiaian on data found in Dymond and Smith. 
no experimental Bi j, 

For some gas pairs, there was little or 

n k 

Bi j  := ∑ Ak⋅ 298.15 
− 1 (9), 

 T  
k = 0 

Table 2: Best fit coefficients for calculating the second virial coefficients for the eight 
significant gas interactions. 

, 's calculated by equation (9) and Table 2 are used in the summation ofThe Bi j

equation (7) (with the negligible terms dropped) to determine Bmix. Also needed to 

calculate the mixture density is the mole-fraction-weighted molecular weight of the 
mixture: 

Mmix := ∑ Mi⋅xi (10) 

i 

(In calculating the molecular weight of the mixture, all components are considered 
significant.) Finally the density of the mixture is calculated by combining equations 
(1), (2), and (3), and using the "mixture" quantities: 



⋅P Mmix
ρmix := (11) 

+R⋅100
3⋅T⋅

1 Bmix⋅ 
P 

 
⋅ R T⋅100

3 
 

This equation yields density in 
g J 

3
 when P is in Pa, R has units 

mol⋅K
, and T is in 

cm 
degrees K. 

Viscosity Calculations 

The principle of corresponding states was applied to calculate the viscosity of 
the pure gas components of the mixture. 
calculate the mixture viscosity by the method of Herning and Zipperer. 

In using the principle of corresponding states, the values of 
ε 
k

 , σ, and 

molecular 
weight were as shown below: 

The pure gas viscosities were used to 

ε 
(K)

k σ (A) M 

Table 3: Molecular constants used in corresponding states calculations. 

ε 
The values of and σ for the non-polar molecules were taken from Bzowski et al., the 

k 
values for water (not covered by Bzowski et al.) were obtained from Monchick and 
Mason. The reduced temperature is calculated by dividing the temperature in degrees K 

by 
ε 

. The reduced collision integral for the nonploar gases is calculated by a best fit
k 

formula: 

( ) + 0.19164⋅ln TrΩr(2 , 2) := exp0.46649 − 0.57015⋅ln Tr ( )2 ... (12) 

 ( )3 + 0.00241⋅ln Tr+ −0.03708⋅ln Tr ( )4 
 



which is from Maitland et al. (Appendix 3). For the polar molecule, water, a fit has 
been performed on tabular data presented in Monchick and Mason (p. 1685) for the 
Stockmayer potential with the dipole moment parameter, δmax := 1.0  for water. 

, ( ) + 0.07175⋅ln TrΩrH2O(2 2) := exp(0.59983 − 0.52318⋅ln Tr ( )2) (13) 

The viscosity for the pure components of the mixture can be calculated using equation 
(6), which with the values of constants and conversion factors combined becomes: 

1


2
(M⋅7.298⋅10
− 41⋅T)
5

η := ⋅  (14)

16
 2 

,(σ⋅10
− 8) ⋅Ωr(2 2)

,with σ in Angstroms, T in degrees K, M the molecular weight, and Ωr(2 2) the result 

from equations (12) or (13). To calculate the viscosity of a multi-component gas 
mixture, the method of Herning and Zipperer was selected, which uses the equation: 

xi⋅η i
:= ∑  (15)
ηmix 1


2
i 







Mj 

Mi 






∑ ⋅xj 

j 

This method was selected based on its simplicity and on testing which shows that it 
generally gives results that are correct within 2% (Herning and Zipperer, Touloukian 
et al.). 

Verification of Accuracy 

To confirm that the calculation methods are acceptably accurate in the range of 
conditions over which they will be used, a set of test cases was generated. First, the 
calculations were tested for pure gases, then they were checked for multi-component 
mixtures. 

Pure Gases 

Reference values of density and viscosity for pure N2, O2, CO2, Ar, and H2O 
are generally available from Hilsenrath et al., the CRC Handbook of Chemistry and 
Physics, and Sengers and Watson. Using these references and the calculation methods 
described in the previous section, the following tables were constructed, showing the 
percent error of the calculated density and viscosity over a range of temperatures (all 
at 101325 Pa pressure). 



Table 4: Accuracy of calculated density and viscosity values for Nitrogen. 

Table 5: Accuracy of calculated density and viscosity values for Oxygen. 

Table 6: Accuracy of calculated density and viscosity values for Carbon Dioxide. 

Table 7: Accuracy of calculated density and viscosity values for Argon. 

Table 8: Accuracy of calculated density and viscosity values for Water. 



For the pure gas test cases, the greatest error in the density values occurred for O2 
at 300 K, where the error was 0.069%. Water posed the greatest difficulties for the 
viscosity calculations, with an error of 2.6% at 400 K. However, the uncertainty in the 
reference viscosity data is more than half the magnitude of the difference between the 
calculated and reference values (Sengers and Watson). Therefore, the errors in the values 
from the simplified density and viscosity calculations were deemed acceptable. 

Multi-Component Gas Mixtures 

Test case gas mixture compositions were postulated and comparisons made 
between the values calculated by the simplified equations described in the previous section 
and the best available reference data. For reference data, twelve test case compositions 
with experimentally measured viscosity data were compiled by Golubev. Also, five of the 
seven mixture compositions listed in Table 1 were examined at 700 K and nominally 300 K. 
Experimental density values could be obtained for two of these fourteen cases from data in 
the ASHRAE Handbook. Also available was the program Supertrapp, written by Ely and 
Huber, which uses the method of extended corresponding states to compute the properties 
of mixtures. While primarily designed to work for hydrocarbon mixtures with small amounts 
of other components, it was found to achieve good agreement with available test case 
experimental data, and hence was used to generate reference data values that were 
otherwise unavailable. 

Tables 9 and 10 present the results of the comparison of reference and calculated 
values for the gas mixture test cases. The column labeled "%" is the percent difference 
between the calculated values and the best available reference data (sometimes 
experimental, sometimes Supertrapp). For density, the largest error was 0.04% for the 
"Half consumed O2" case at 300 K. For viscosity, the largest errors of about 4.5% were 
found at the high temperature conditions, slightly above the accuracy goal for viscosity of 
4%. 

Conclusions 

The simplified calculations for obtaining the density and viscosity of gas mixtures 
generated by the EMCF were found to be an acceptable balance between ease of 
implementation and accuracy of results. The accuracy of the calculated density is about 
twice as good as the 0.1% goal, while calculated viscosity is about 0.5% worse than the 4% 
goal. The worst errors in viscosity are under the high temperature conditions. The method 
of corresponding states used to calculate viscosity could be readily used to give the thermal 
conductivity of gas mixtures as well. Further study seeking simple algorithms that calculate 
the properties of multi-component gas mixtures and testing of those algorithms would be 
useful. 
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